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Introduction 
 

Chickpea (Cicer arietinum L.) (2n=2X=16), belonging to 

the subfamily Papilionaceae within the family 

Leguminosae, is a notable and unique food legume (Jain 

et al., 2022). It is widely grown around the world and is 

considered the second most significant grain legume 

crop, following dry beans, in terms of global planting 

area. Chickpeas play a vital role in farming within dry 

and semi-dry areas and are also successfully cultivated in 
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Enhancing chickpea (Cicer arietinum L.) seed production can be achieved by selecting superior 

genotypes according to various yield and yield component characteristics. Yield is a 

multidimensional feature that is controlled by several circumstances; thus, principal component 

analysis, a well-established method, was used to discover and limit the number of characteristics 

necessary for effective selection. As a result, this experiment was conducted to analyze the 

genetic diversity of chickpea genotypes. The study involved 81 chickpea germplasm lines and 

15 check varieties, totalling 96, assessed through an augmented block design with four blocks. 

Each experimental unit consisted of two rows per genotype, each 2 meters in length, with a 0.5-

meter gap between rows and plants spaced 30 × 10 cm apart. Standard procedures were used to 

obtain data on 10 quantitative traits for every genotype. Among the ten principal components 

(PCs) analyzed, only three had eigenvalues exceeding 1.0, accounting for approximately 

63.97% of the variability. PC 1 accounted for the largest portion of variability at 26.39%. This 

was followed by PC 2, which explained 21.79% of the variability with an eigenvalue of 2.17, 

and PC 3, which accounted for 15.79% with an eigenvalue of 1.57. The first three PCs—days to 

50% pod setting, days to 50% flowering, and days to maturity—accounted for 63.97% of the 

overall variation and explained the characteristics. Genotypes frequently appearing in more PCs 

included ICC-16534, ICC-6816, ICC-12726, and CSJ-515. The current study revealed that 

chickpea germplasm exhibited significant genetic diversity across most of the traits examined. 
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winter crop rotations alongside cotton and maize in 

regions with temperate climates. However, warm and 

rainy climatic circumstances make Ascochyta blight a 

significant obstacle to winter-sown chickpea output, 

leading to considerable yield losses (Ton, 2023). 

Ensuring food and nutritional security is both 

economically and ecologically vital, particularly in 

climates subject to variability. This crop accounts for 

approximately 12 percent of pulse production worldwide 

(Mallu et al., 2015). Beyond its nutritional benefits, 

chickpea enhances soil fertility via symbiotic nitrogen 

fixation. Lately, chickpea cultivation has expanded to 

over 50 countries worldwide (Tsehaye et al., 2020). In 

India, chickpea production is projected to decline by 198 

thousand metric tonnes (KMT) to 11.337 million metric 

tonnes (MMT) by 2025 (The Ministry of Agriculture and 

Farmers Welfare, 2024). Although states such as Madhya 

Pradesh, Andhra Pradesh, Maharashtra, and Karnataka 

have increased their chickpea cultivation areas, the 

growth of irrigated wheat farming has led to a notable 

decrease in chickpea cultivation in areas such as Punjab, 

Haryana, Uttar Pradesh, and Bihar (Arya et al., 2019). 

 

Due to a limited genetic foundation and a variety of 

biotic and abiotic stressors, chickpea production potential 

has been severely curtailed. One of the main causes of 

the drop in chickpea yields per unit area is the limited 

genetic base and the lack of commercial cultivars with 

high yields. According to Agrawal et al., (2018), the 

majority of commercial chickpea cultivars are vulnerable 

to climate change and show little tolerance for a variety 

of environmental conditions. Individual variability is 

necessary for a species to survive in the wild and is a 

requirement for crop genetic modification initiatives to 

be effective (Singh et al., 2021). A primary obstacle to 

utilizing these cultivars has been the lack of knowledge 

regarding key economic traits (Gaur et al., 2012). 

Breeders must prioritize adaptation in varietal 

development initiatives to achieve sustainable agronomic 

benefits. Enhancing chickpea yield can be accomplished 

by selecting superior genotypes directly associated with 

seed yield. Breeding programs can use these genotypes 

just to increase grain yield. Since yield is a complicated 

characteristic that is impacted by a variety of 

environmental factors, principal component analysis, or 

PCA, has been developed. To cut down on the number of 

traits needed for effective selection, PCA finds and ranks 

the most relevant qualities. 

 

Modern data analysis relies heavily on PCA, a simple, 

non-parametric method for extracting relevant 

information from mixed datasets. To uncover the 

sometimes-concealed simplified structure that frequently 

underpins complicated data collection, PCA offers a path 

for reducing it to a lower dimension with the least 

amount of work. It preserves the majority of the dataset’s 

variety while lowering the dimensionality of the data. 

PCA achieves this reduction by employing a small 

number of components to find the principal components 

or directions along which the data variation is maximum; 

A relatively small amount of numbers, as opposed to 

values for thousands of variables, can be used to 

represent each sample. Therefore, measuring the 

importance of each dimension for describing the 

variability of a dataset is PCA's primary benefit. 

Principal components, or a (lower) number of 

uncorrelated variables, are created by converting several 

(possibly) linked variables via a mathematical method 

(Muniraja et al., 2011). 

 

Materials and Methods 
 

Using principal component analysis, this study was 

conducted in Rabi 2024–2025 at the Student Inspection 

Farm, Department of Genetics and Plant Breeding, 

Chandra Shekhar Azad University of Agriculture and 

Technology, Kanpur, Uttar Pradesh, to evaluate superior 

chickpea genotypes.  

 

The materials used in the experiment included 96 distinct 

genotypes of chickpeas, 15 of which were check varieties 

(Table 1), evaluated for ten quantitative traits, and sown 

augmented block design consisting of four blocks. The 

recommended packages and practices required for 

healthy crops were also included. The samples were from 

Hyderabad's International Crop Research Institute for 

Semi-Arid Tropics (ICRISAT). Two 2.0-meter rows 

were planted in each block, separated by 30 cm between 

rows and 8–10 cm between plants. Six quantitative 

characteristics were documented: days to 50% flowering 

(DF 50%), days to 50% pod setting (DPS 50%), days to 

maturity (DM), plant height (PH) (cm), number of 

primary branches per plant (NPB), number of secondary 

branches per plant (NPB), number of pods per plant 

(NPD/P), number of seeds per pod (NSD/PD), 100 seed 

weight (100 SW), and seed yield per plant (SY/P).  

 

The bulk of the information in a large set can be retained 

when a large number of variables are reduced to a small 

set using the widely used PCA dimension reduction 

technique (Massay, 1965; Jolliffe, 1986). Thus, before 

beginning a hybridization program to create better 
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hybrids in chickpeas, the current study used principal 

component analysis to assess chickpea germplasm in 

order to find and rank important traits and genotypes. A 

statistical tool for principal component analysis is the 

factoextra package in R Studio (Kassambara and Mundt, 

2020). 

 

Results and Discussion 
 

According to the findings of the basic descriptive 

statistics for the ten quantitative variables, a significant 

amount of variation was observed among the chickpea 

genotypes under investigation (Table 2).  

 

Principal component analysis is one basic non-parametric 

technique that can be used to extract relevant information 

from mixed datasets. Principal Component Analysis 

(PCA) is a popular technique for dimension reduction, as 

noted by Massay (1965) and Jolliffe (2002). It 

successfully reduces a sizable collection of variables into 

a more manageable set while preserving the majority of 

the information found in the original data. 

 

The current study aimed to assess chickpea genotypes to 

pinpoint and rank significant traits and genotypes using 

principal component analysis (PCA) before starting a 

hybridization program to create improved chickpea 

crosses. A statistical technique called principal 

component analysis uses an orthogonal transformation to 

convert a collection of observations of possibly 

correlated variables into principal components, which are 

sets of values of linearly uncorrelated variables. There 

are as many primary components as there are original 

variables, or fewer. Each consecutive component in this 

transformation has the highest variance while being 

orthogonal to the preceding components, with the first 

principal component capturing the maximum variance 

(i.e., explaining as much variability in the data as 

feasible). An uncorrelated orthogonal basis set is formed 

by the resultant vectors. Since the principal components 

are eigenvectors of the symmetric covariance matrix, 

they are orthogonal (Kumar et al., 2019). 

 

In the present investigation, ten quantitative chickpea 

traits were subjected to PCA. Only three PCs out of ten 

had variability of roughly 63.97% and more than 1.0 

eigenvalue (Table 3 and Fig. 1). Consequently, these 

three PCs received the attention they deserved in the 

current study. The genotypes for the characteristics under 

investigation were next in line, with PC1 explaining a 

total variation of 26.39% with an eigenvalue of 2.63. 

Table 2 lists the two PCs that contributed the most to the 

overall variation: PC 1 and PC 2. PC 1 explained the 

greatest percentage of overall variability in the collection 

of all variables, whereas the other components explained 

decreasing percentages of variation. PC 1 demonstrated 

the most variability at 26.39 %. This was followed by PC 

2 (21.79%) with an eigenvalue of 2.17, and PC 3 

(15.79%) with an eigenvalue of 1.57. The findings above 

indicate that yield-contributing features varied the most 

in PC1, followed by PC2 and PC3. PCA aims to identify 

the fewest components that account for the greatest 

amount of variability among all components. In addition, 

the germplasm was ranked according to the PC scores. 

Malik et al., (2014) and Rajani et al., (2020) had similar 

outcomes. 

 

The results also indicated that in PC1 (fig. 2 and Table 

3), the number of secondary branches per plant (0.437), 

number of primary branches per plant (0.426), seed yield 

per plant (0.433), 100 seed weight (0.330), days to 50% 

pod setting (0.327), days to 50% flowering (0.280), 

number of seeds per pod (0.221), days to maturity 

(0.207), and number of pods per plant (0.193) had the 

most significant positive values, whereas plant height (-

0.128) showed a negative value. Days to 50% blooming 

(0.495), days to 50% pod setting (0.489), and days to 

maturity (0.465) showed the highest positive values in 

PC 2, but all other features showed negative loadings. 

Positive contributions of days to 50% pod set and days to 

50% blooming (0.495) were found in the third 

component. Akande (2007); Ojo et al., (2012); 

Miladinovic et al., (2006); Shivwanshi and Babbar 

(2017) and Amrita et al., (2014) corroborated these 

findings in chickpeas. According to their findings, the 

first PC was associated with characteristics that define 

production, such as the number of pods per plant, 

whereas the second PC was primarily dominated by 

phenological aspects. 

 

More than one positive-scoring genotype was discovered 

in more PCs ICC 227, ICC 15510, ICC 107, ICC 2720, 

ICC 14778, ICC 8195, ICC 6816, ICC 867, ICC 19165, 

ICC 7867, ICC 440, ICC -16534, ICC -6816, ICC -

12726, JG-14, BG3043, WR315, JAKI9218, PHULE G 

405, JG74, CSJ-515, ICC -7877, ICC -3582, ICC -12324, 

ICC -6874, ICC -11764, ICC -11284, ICC -12307, ICC -

8318, ICC -13628, ICC -10399, ICC -12299, ICC -4841, 

ICC 10341, ICC 16903, ICC 1533, ICC 6279, ICC -

13523, ICC -13187, ICC -1357, Pusa JG-16, JG-24, 

Kundan, SamridhiJG-16, HC-5, GNG-2207 and GL-

13001 (table 4 and fig 3).  
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Table.1 List of Genotypes used under this study 
 

S. 

No 

Genotype 

Name 

S. 

No 

Genotype 

Name 

S. 

No 

Genotype 

Name 

S. 

No 

Genotype 

Name 

S. 

No 

Genotype 

Name 

1 ICC 4418 21 ICC 3218 41 ICC 8350 61 ICC -10399 81 ICC -3582 

2 ICC 14669 22 ICC 2072 42 ICC 138 62 ICC -12299 82 Pusa JG-16 

3 ICC 7819 23 ICC 2507 43 ICC 4495 63 ICC -4841 83 JG-24 

4 ICC 11897 24 ICC 10673 44 ICC 14815 64 ICC -16534 84 Kundan 

5 ICC 14446 25 ICC 16374 45 ICC 14778 65 ICC -6816 85 Samridhi 

6 ICC 7323 26 ICC 19100 46 ICC 8195 66 ICC -8318 86 JG-14 

7 ICC 762 27 ICC 6279 47 ICC 6816 67 ICC -11498 87 BG3043 

8 ICC 10393 28 ICC 4491 48 ICC 10466 68 ICC -11284 88 WR315 

9 ICC 16903 29 ICC 15435 49 ICC 867 69 ICC -12307 89 JAKI9218 

10 ICC 1883 30 ICC 6294 50 ICC 19165 70 ICC -14687 90 PHULE G 405 

11 ICC 6513 31 ICC 11121 51 ICC 7867 71 ICC -12328 91 JG74 

12 ICC 1915 32 ICC 5845 52 ICC 440 72 ICC -1194 92 CSJ-515 

13 ICC 6806 33 ICC 14831 53 ICC 1431 73 ICC -6874 93 JG-16 

14 ICC 1533 34 ICC 227 54 ICC 19164 74 ICC -11764 94 HC-5 

15 ICC 11378 35 ICC 15510 55 ICC - 4918 75 ICC -637 95 GNG-2207 

16 ICC 1161 36 ICC 107 56 ICC -7819 76 ICC -13077 96 GL-13001 

17 ICC 7326 37 ICC 2720 57 ICC -13523 77 ICC -12324 
 

18 ICC 56610 38 ICC 16795 58 ICC -13187 78 ICC -12726 

19 ICC 5434 39 ICC 26911 59 ICC -1205 79 ICC -1357 

20 ICC 9137 40 ICC 10341 60 ICC -13628 80 ICC -7877 

 

Table.2 Basic Descriptive Statistics of 10 yield-related traits  
  

DF 

50% 

DPS 

50% 

DM PH NPB NSB NPD/P NSD/PD 100 

SW 

SY/P 

Mean  75.97 87.35 115.52 34.90 5.25 13.76 52.07 1.69 14.79 13.38 

Variance 7.01 10.69 62.78 45.99 2.84 12.52 188.87 0.21 9.57 27.80 

St. dev. 2.65 3.27 7.92 6.78 1.68 3.54 13.74 0.46 3.09 5.27 

 

Figure.1 Screen plot constructed based on thirteen principal component and their eigenvalues 
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Table.3 Eigen value, Variability Contribution and Eigen vectors for the Principal Component Analysis in 

chickpea  
 

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

DF 50% 0.280 0.495 0.005 0.009 -0.061 -0.151 -0.528 -0.114 0.423 0.423 

DPS 50% 0.327 0.489 0.040 -0.024 0.090 0.034 -0.046 -0.241 -0.135 -0.751 

DM 0.207 0.465 -0.259 0.151 0.308 -0.108 0.493 0.328 -0.298 0.324 

PH -0.128 -0.158 -0.588 -0.023 0.123 -0.667 -0.092 -0.363 -0.091 -0.066 

NPB 0.426 -0.159 0.017 -0.482 -0.355 -0.304 -0.172 0.483 -0.278 -0.053 

NSB 0.437 -0.117 -0.223 -0.064 -0.471 0.144 0.516 -0.380 0.283 0.094 

NPD/P 0.193 -0.178 -0.510 0.575 -0.125 0.262 -0.284 0.362 0.085 -0.194 

NSD/PD 0.221 -0.180 0.480 0.495 0.043 -0.548 0.197 0.120 0.267 -0.130 

100 SW 0.330 -0.303 -0.102 -0.340 0.690 0.132 0.020 0.098 0.407 -0.065 

SY/P 0.433 -0.283 0.187 0.222 0.193 0.143 -0.227 -0.397 -0.552 0.277 

Eigenvalue 2.639 2.179 1.579 0.794 0.718 0.639 0.483 0.404 0.283 0.280 

% of 

Variance 

26.39% 21.79% 15.79% 7.94% 7.18% 6.39% 4.83% 4.04% 2.83% 2.80% 

Cumulative 

% of 

Variance 

26.39% 48.18% 63.98% 71.91% 79.10% 85.49% 90.32% 94.36% 97.20% 100.00% 

 

Table.4 PCA score for 96 genotypes of Chickpea  
 

S.

No. 

Genot

ype 

PC

1 

PC

2 

PC

3 

S.

No. 

Genot

ype 

PC

1 

PC

2 

PC

3 

S.

No. 

Genot

ype 

PC

1 

PC

2 

PC

3 

7

6 

ICC -

13077 

-

2.6

14 

0.8

96 

0.0

06 

1 ICC 

4418 

-

1.2

95 

-

0.6

13 

-

0.5

60 

26 ICC 

19100 

-

0.3

80 

-

0.8

55 

-

0.1

47 

51 ICC 

7867 

3.7

43 

-

1.1

19 

-

0.0

80 

7

7 

ICC -

12324 

0.3

51 

2.6

91 

1.5

64 

2 ICC 

14669 

-

2.1

27 

-

0.3

86 

-

0.2

46 

27 ICC 

6279 

-

0.0

05 

-

1.0

28 

1.1

33 

52 ICC 

440 

2.1

10 

-

2.2

76 

0.3

69 

7

8 

ICC -

12726 

1.6

64 

3.6

78 

1.7

14 

3 ICC 

7819 

-

0.9

80 

-

0.7

12 

-

0.9

38 

28 ICC 

4491 

0.3

98 

-

3.0

20 

-

1.2

82 

53 ICC 

1431 

0.3

51 

0.6

27 

-

0.6

71 

7

9 

ICC -

1357 

-

0.0

25 

-

0.4

91 

4.8

66 

4 ICC 

11897 

-

0.6

56 

-

0.7

90 

0.1

16 

29 ICC 

15435 

-

1.8

73 

-

1.3

40 

-

1.6

01 

54 ICC 

19164 

0.7

43 

-

0.2

16 

-

0.4

49 

8

0 

ICC -

7877 

-

0.8

04 

1.7

65 

0.7

11 

5 ICC 

14446 

-

1.6

32 

-

1.0

75 

-

0.9

30 

30 ICC 

6294 

0.0

47 

-

1.0

41 

-

0.0

17 

55 ICC - 

4918 

-

0.5

66 

0.5

44 

-

1.0

51 

8

1 

ICC -

3582 

0.1

35 

1.8

58 

0.2

22 

6 ICC 

7323 

-

0.7

07 

-

1.3

56 

-

1.0

18 

31 ICC 

11121 

-

0.8

37 

-

0.4

42 

-

2.6

57 

56 ICC -

7819 

-

1.7

21 

-

1.1

35 

-

1.6

66 

8

2 

Pusa 

JG-16 

0.8

60 

-

0.3

58 

1.0

82 

7 ICC 

762 

-

2.3

07 

0.1

60 

-

0.1

61 

32 ICC 

5845 

-

0.3

80 

-

0.6

15 

-

1.5

06 

57 ICC -

13523 

0.6

73 

-

0.6

48 

1.4

66 

8

3 

JG-24 0.2

46 

0.1

74 

1.5

93 

8 ICC 

10393 

-

0.3

85 

-

0.9

21 

-

0.4

40 

33 ICC 

14831 

0.0

34 

0.0

01 

-

1.6

57 

58 ICC -

13187 

0.2

73 

-

1.1

42 

1.4

19 

8

4 

Kund

an 

0.1

44 

-

0.6

64 

1.4

53 

9 ICC 

16903 

-

0.6

-

1.0

1.2

62 

34 ICC 

227 

1.2

90 

0.2

08 

-

1.1

59 ICC -

1205 

-

2.0

0.8

66 

0.8

47 

8

5 

Samri

dhi 

-

0.2

-

0.9

1.8

84 
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90 33 39 07 35 14 

10 ICC 

1883 

-

0.7

18 

-

0.3

66 

-

0.8

84 

35 ICC 

15510 

2.3

45 

0.6

64 

-

1.8

76 

60 ICC -

13628 

-

1.3

95 

2.0

18 

-

1.2

98 

8

6 

JG-14 1.4

15 

-

0.4

30 

1.3

16 

11 ICC 

6513 

-

1.4

46 

-

0.1

14 

-

0.2

70 

36 ICC 

107 

3.8

52 

-

0.4

29 

-

0.6

19 

61 ICC -

10399 

-

1.4

80 

3.1

74 

-

0.0

25 

8

7 

BG30

43 

3.4

87 

0.1

17 

0.1

55 

12 ICC 

1915 

-

1.5

73 

0.2

10 

-

1.3

87 

37 ICC 

2720 

2.8

14 

-

1.0

86 

-

0.2

94 

62 ICC -

12299 

-

0.4

45 

1.3

58 

-

0.1

45 

8

8 

WR31

5 

4.4

35 

-

2.2

82 

0.9

32 

13 ICC 

6806 

-

1.7

00 

-

0.1

73 

0.6

38 

38 ICC 

16795 

0.8

48 

0.8

70 

-

2.0

28 

63 ICC -

4841 

-

0.7

62 

3.3

27 

0.3

43 

8

9 

JAKI

9218 

1.5

75 

-

0.4

95 

-

0.0

92 

14 ICC 

1533 

-

1.6

14 

-

1.4

98 

1.6

31 

39 ICC 

26911 

0.5

04 

0.8

55 

-

1.4

56 

64 ICC -

16534 

2.0

91 

3.1

58 

0.8

41 

9

0 

PHUL

E G 

405 

1.3

79 

1.0

32 

-

0.0

80 

15 ICC 

11378 

-

2.2

09 

0.2

96 

0.5

52 

40 ICC 

10341 

0.8

61 

1.0

92 

-

0.5

31 

65 ICC -

6816 

1.2

74 

3.5

31 

2.0

69 

9

1 

JG74 1.0

30 

-

0.3

56 

0.4

46 

16 ICC 

1161 

-

0.0

50 

-

1.0

55 

-

0.0

72 

41 ICC 

8350 

0.6

31 

-

0.7

99 

-

0.6

58 

66 ICC -

8318 

-

2.1

37 

3.9

48 

-

0.6

36 

9

2 

CSJ-

515 

1.5

63 

1.2

58 

2.0

01 

17 ICC 

7326 

-

1.2

60 

-

1.1

33 

-

0.4

71 

42 ICC 

138 

-

0.4

31 

-

0.2

01 

-

1.8

13 

67 ICC -

11498 

-

1.9

53 

0.7

72 

0.8

92 

9

3 

JG-16 -

1.5

82 

-

2.0

46 

3.7

25 

18 ICC 

56610 

-

1.5

04 

-

0.0

40 

-

0.4

54 

43 ICC 

4495 

0.6

34 

0.0

42 

-

0.7

39 

68 ICC -

11284 

1.1

25 

1.3

06 

-

0.6

86 

9

4 

HC-5 -

3.5

58 

-

4.4

93 

2.9

48 

19 ICC 

5434 

-

1.0

74 

-

1.3

62 

-

0.5

59 
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Figure.2 Variable contribution of ten characters to Principal Component Analysis 
  

 
 

Figure.3 Individual Contribution to Principal Component Analysis 
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Figure.4 PCA Plot between 1st and 2nd component showing contribution of variability among 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These genotypes can be used as ideotype breeding 

materials for selecting qualities linked to early maturity 

and seed yield, and they may also be used in breeding 

programs to increase seed yield (Rajani et al., 2020; Jain 

et al., 2023). 

 

The distance of the variables to the PCs demonstrated 

their contributions to the genotypes (Fig. 4). The PCA 

biplot between PC1 and PC2 also showed that the most 

essential aspects contributing to genetic variability in the 

chickpea genotypes under study were the number of 

secondary branches per plant, seed yield per plant, 

number of primary branches per plant, 100 seed weight, 

days to 50% pod setting, days to 50% flowering, number 

of seeds per pod, days to maturity, and number of pods 

per plant.  

 

The success of a breeding program aimed at improving 

chickpeas will depend more on the genotype selection 

made from the first three PCs (Mahmood et al., 2018), 

and Malik et al., (2014) published findings consistent 

with this study.  

 

According to the PCA conducted in this study, the first 

three PCs—days to 50% pod setting, days to 50% 

flowering, days to maturity, and seed yield per plant— 

contributed 63.97% of the total divergence and traits. 

These three PCs also significantly contributed to the 

overall variation in the yield. Therefore, it is possible to 

simultaneously select yielding traits in chickpeas using 

PCs 1, 2, and 3. These qualities can be considered for the 

continued development and progress of chickpeas.  
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